Center for Information & Communications Technology Research (CICTR)

Dept. of Electrical Engineering
The Pennsylvania State University
University Park, PA . 16802
Normally, start of a new century brings with it dramatic changes. The 21st century is no different.

The biggest technological and social change will be the "Convergence of Computers and Communications".
The Evolution of Communications and Computing

Morse Code Telegraph

Electric Mechanics

Electronic Exchanges & Computers

Electric Electronics

Wireless Multimedia Communications Optical & Electronics

Optical Systems & RF Technology
Next five years will mark the start of a Multimedia Age, freeing people from constraints of time and place and from limits on the form of the information they send and receive.
“I think there is a world market for may be 5 computers”

Thomas Watson,
Chairman of IBM,
1943
“There is no reason anyone would want a computer in their home”

Ken Olson,
Founder of Digital Equipment Corp.,
1977
“640K ought to be enough for anybody”

Bill Gates,
1981
Homes will be wired and equipped for ‘Telework’, ‘distance-learning’ and an unimaginable range of ‘entertainment’ options.
People will work for "virtual corporations" made up of "virtual workgroups" including consultants, suppliers and customers who operate globally using “virtual travel” for most face-to-face meetings.

In sum, we will become a "virtual society".
• What will make this possible?

One network of many choices ... a vast and comprehensive multimedia ... based on broadband transmission and switching of voice, data and video.

• Separate private voice and data networks replaced by a single multimedia network with seamless connectivity.
• The new network will deliver voice, "video dial-tone" and advanced data services as cost-effectively and as easily as telephone service is delivered today.

• It will fundamentally alter how we live and work in a Global Society.
Yet, even as this network enables daring new concepts to take hold, it allows cherished old ones to return:

- Doctors will again make "house-calls".
- More people will work at home than at any time since the end of the Agrarian Age.
Around the year 2005, we'll begin to see:

• The Virtual Corporation
• The Wired Home
• The Virtual Hospital
• The Virtual Campus
The Virtual Corporation

Organizational hierarchies will flatten, workgroups will flourish and the use of contract workers and consultants will accelerate.

“Virtual corporation” will become a reality as “virtual Project teams” composed of corporate employees, suppliers, consultants and even consumers redefine hierarchies in organizations.
The Virtual Corporation -- Cont’d

• People will travel less for business and more for pleasure as TV-quality video conferencing makes "virtual travel" a lower-cost and more productive alternative. Seeing distant colleagues will help people create more personal business relationships, improving productivity.

• Consumer service will make or break the relationship between buyer and seller as savvy consumers demand Service when and how they want it.
A glimpse at the future ...

The Wired Home

• Access to 500+ cable television channels and thousands of Internet sites and a warehouse of on-demand videos will make the home a multimedia theater.

• The work-at-home movement will create new flexibility and opportunities. Employers will be open to new arrangements to save on real estate costs and attract talented workers. Furthermore, studies will show "tele-workers" are as productive as their counterparts in a central office.
A glimpse at the future...

The Wired Home -- Cont’d

Computer-assisted learning and training in the home will supplement the role played by traditional educational institutions.

Families and telecommuters will increasingly use communications technology to overcome a lost sense of community. Videoconference "chat lines" will become an alternative to e-mail.
Health-care providers will re-engineer to deliver services more effectively, lower-administrative-costs and optimize laboratory and hospital resources.

Patient registration will be done remotely and the processing of bills and insurance forms will be done faster using standardized electronic forms.
The Virtual Hospital -- Cont’d

• Rural hospitals will use videoconferencing and high-resolution visual communications technology for remote consulting and for training health care professionals.

• Remote diagnosis and videoconferencing will enable "house-calls" for some basic health services and follow-up visits or to reach areas without decent health care.
Traditional public and private educational institutions will use information technology to "re-engineer" themselves in even more dramatic fashion than the major corporations that reinvented themselves in the 1990s.

"Lifetime learning" will be enabled by new technologies, including video training and access to the Internet and on-line services from the home or office. Universities will form alliances based on distance learning to offer specialized joint degrees, drawing on the strengths of their faculties.
A glimpse at the future ...

Electrical and Computer Engineering (ECE)

Wireless communications technologies promise to dramatically alter the telecommunications landscape over the next decade. In so doing, they may significantly change the makeup of what we consider to be **Electrical and Computer Engineering (ECE)**.

We have conventionally considered **Analog and Digital Circuits** to be "center" or "core" topics of ECE, the present trends in telecommunications may shift the center of ECE more toward **Digital Communications and Signal Processing**.

The changes in technology will be no less dramatic. In a decade, we will be amused at how many things we used to connect with wires.
• Today’s voice and data networks are marvels of efficiency and productivity. Yet, they are different in fundamental Ways.

• Voice networks are based on end-to-end connections of Circuit switching, while data networks are based on hop-by-hop datagram packet switching.

• Through the end of the decade, multimedia solutions will be delivered that effectively bridge the worlds of voice and data. The large required bandwidth will be provided through an optical backbone and broadband local access.
Recent Past:
Integrated, low-rate voice, data, and video; independent wideband voice and data services.

Current:
Low-rate interactive applications over internet, extensive TCP/IP and connection-oriented traffic in the backbone.

Long Term:
Collaborative, wideband data-intensive multimedia communications, several megabits to a user, connectionless and connection-oriented packet-switching straight through the backbone.
As easy to use as the ‘telephone’ is today's standard for user friendly products. In a Multimedia Age, that standard may even be surpassed, as, a revolution in human interface technologies makes interaction with multimedia systems almost as intuitive and comfortable as talking to another person.
The mouse, keyboard and traditional telephone will be gone, or used as supplements to a system that interacts with the individual in a more natural way.

Today's automated voice response systems, voice recognition systems, handwriting recognition systems and real-time interactive video systems will advance, delivering human-like responsiveness. Other technologies such as personal agents and "expert systems" software will rapidly mature into systems that can ‘learn as they go’.
Publishing will be transformed because people will have all the convenience of today's portable newspapers, magazines and books in the form of wireless computing display screens, capable of downloading virtually any newspaper or magazine in the world.
Travel will be transformed as today's ‘infant’ video conferencing systems grow into wall-size *3-D Displays* that can meld a conference room in Boston with another room in San Francisco, creating a virtual conference center where teams of people can spend a day or a week together as if they were in the same room.
Breakthroughs in ‘holographic’ and ‘virtual reality’ technologies will bring complete integration of individuals from multiple locations around the world into single virtual meeting rooms.

In such a meeting, only the firmness of a person's handshake will make it possible to know whether the individual is really in the same room or not.
As cost of ‘Virtual Reality’ technology falls, this will have a huge impact.

Linked to high-speed networks, will allow entire new collaborative possibilities.
The Web is the Computer

- Expect people in future to have persistent access to the web ... Peta-bytes of storage.
- Information is growing exponentially, we no longer throw away information ...
- Finding, sorting, distributing this information is the next big challenge.
- Networks to serve this data will be very important. Copper, fiber, satellites, microwave, ...
- The role and importance of the operating system will fade.
- Microprocessors will not just be in computers.
What if a palmtop could store a terabyte of data?

- The Encyclopedia Britannica is only about 1 gigabyte
- A terabyte would hold photos of 10% of the U.S. population (30 million photos each 30KB)

What if a palmtop is capable of OC-48 (2.5 gigabits per second) ?

- Could send encyclopedia in 3 seconds
- Could send photos of 10% of U.S. population in one hour
- Full motion video to a palmtop ?
Moore’s - Law: Computer power doubles every 24 months with cost remaining constant

- Fiber communications capacity doubled every 12 months up to 1995. Since then, it has been more than doubling, with use of WDM and D-WDM.
- RF wireless communications capacity increased by a factor 1.5 every 12 months in 2000’s and the growth is slowing down due to power/Band/Performance/Mobility limits.
Optics Technology

Devices

- Broadband Tunable Lasers
- Broadband Tunable Detectors
- Wavelength Converter
- Ultra-fast Switching Devices
- Low-Cost Mode-Locked Lasers
- 2-D arrays of Switching Devices
- High Power Lasers
- Ultra-fast Spatial Light Modulators
- Optical Interconnects

- WDMA,
- Dense -WDM (D-WDM)
- FE - CDMA
- TDMA, CDMA
- Free-Space
- Networks & switches
Networks and Systems

- Inexpensive Wavelength-Selective Interconnects, Optical Memory
- WDM Switching,
 - Optical Switch /
 - Optical Cross-Connect

Applications:

- Intelligent Multimedia Networks
- All-optical Backbone & Broadband Local Access
Why D-WDM?

♦ Local exchange carriers are increasingly faced with problems associated with fiber exhaust.
♦ An open system architecture facilitates the integration of different data protocols, e.g., MPLS, IP, SONET, SDH.
♦ SONET hierarchy has already reached the transmission speed of the fiber.
♦ Installing more fiber is only cost effective in limited cases.
♦ Less number of Amplifiers.
Novel Optical Device Invention made D-WDM possible

- Add-Drop Multiplexers
- Wide-Band Optical Amplifiers
- Optical Cross Connects
- Optical Switches
- Narrow Band, High-Isolation Optical Filters
Flexibility in Ultimate Solution

♦ D-WDM Can be Used as a Unifying Layer.

♦ D-WDM is Data-Rate and Data-Format Transparent.

♦ D-WDM can be Seamlessly Integrated into the Current Network Structure.

♦ No other wired or Wireless Technology is capable of delivering such a capacity.

♦ Current research in the 1600nm and 1400nm regions promise colossal bandwidth available in future.
D-WDM in Network

- Circuit Switched: Using Cross Connects
- Wavelength switched: Using Add-Drop Multiplexers
- Packet Switching Under Research: Using MPLS Over SONET

Optical Transmission / Electrical Switching
 i) RAINBOW (I, II, and III)
 ii) MONET
 iii) ONTC
 iv) STARNE

All-Optical
 i) ATMOS
 ii) CORD
 iii) LEARN
“We’re just getting started. The market is going to be huge.

People talk about the window of opportunity; the window is the next 20 or 30 years”
Wireless communications technologies are currently experiencing explosive growth and promise to dramatically alter the telecommunications landscape over the next decade.
Digital Signal Processing

SILICON PERFORMANCE IMPROVEMENT FOR MIPS, RAM, FPGAs ~ 20% PER YEAR

---> VIDEO COMPRESSION: ANALOG (NTSC) - 6 MHZ, 50 dB SNR
DIGITAL - 100 Mb/s, 20 dB SNR
MPEG-2 - 3-5 Mb/s, 20 dB SNR
MPEG-x

→ CELLULAR/PCS
HANDSETS: AMPS HANDSET
PHS/PACS TDMA CDMA
Hybrid

→ MODEM TECHNOLOGY: 56.0 Kbps DATA MODEM, 2 Mbps DSL MODEM, 100 Mbps CABLE MODEM, 40 Gbps ETHERNET MODEM,

→ COUNTERMEASURE TECHNIQUES: ERROR CORRECTION CODES, ADAPTIVE EQUALIZATION, SMART/ADAPTIVE ANTENNA PROCESSING, MIMO PROCESSING ...
As the term "wireless" enters its second century, it is experiencing a renaissance of rare proportions.

Some projections show the number of wireless subscribers as high as several hundred millions in the first decade of new millennium.
Trends in Wireless Communications point to the merger of multiple services into integrated multimedia technologies.
The most widely used wireless service is mobile voice. The first U.S. standard, AMPS (Advanced Mobile Phone Service), was based on analog technologies. At the end of 1995, there were in excess of 30 million cell phone subscribers. This number has increased, substantially. However, the quality of this service (both sound quality and reliability) is not as good as wire-line standards.
Digital standards have greatly improved the Quality-of-Service, but arriving at a consensus on the best multiple access technology (e.g., TDMA, CDMA) delayed the widespread use of digital standards in the USA.
Other advantages of digital technology:

- More efficient use of spectrum via compression.
- Increased reliability using error correction coding.
- Superior encryption to ensure privacy.
- Digitized information are well suited for the integration of multiple services.
Advances in displays, battery technology and processing power have made it affordable to carry around laptops and palmtops.

Bit rate limitation of current cellular phone systems can be addressed by the concept of Adaptive Rate delivery of future Wireless Multimedia services.

Services are provided by a combination of delivery technologies giving:
- Low bit rates (< 100 Kbits/s) with universal coverage;
- Medium bit rates (< 50 Mbits/s) over campus-like areas;
- Very high bit rates (> 100 Mbits/s) services in localized areas (cellular systems).

Examples: GSM, New HIPERLAN radio standard, WiMax and Optical Wireless for high bandwidth islands, e.g., classroom, hotel lobby, shopping mall, train stations, etc.
Next-Generation Wireless Systems

1. **Peak Data Rate**
 - **4G H/S Wireless LAN**: 5 GHz Unlicensed
 - **4G Wireless LAN**: 2.4 GHz Unlicensed
 - **3G Fixed or Pedestrian**: 2 GHz
 - **3G Mobile**: 2 GHz
 - **2.5G Mobile/Pedestrian**: 2.4 GHz
 - **2G Wireless**: 800 MHz, 2 GHz

2. **Range**
 - 10 feet
 - 100 feet
 - 1 mile
 - 10 miles

3. **Wider Area, More Mobility**

4. **Higher Rate, Less Mobility**

5. **Devices**
 - Bluetooth
 - Zigbee (US)
 - Zigbee (Europe)
 - PANs 2.4GHz

Note: The diagram illustrates the peak data rates and ranges for different wireless systems, highlighting the distinctions between wide area, high-speed systems and those with higher rates but less mobility.
Market Needs

Market needs to consolidate the data into one single handset

Demands for fast speed data transfer
Optical Wireless Network

In contrast to radio-wave-based technology, such as Wi-Fi or the new WiMAX systems, optical wireless networks can connect multiple indoor portable devices to the Internet at broadband speeds using infrared light. Inexpensive infrared transmitters/receivers beam signals into a room 1 to link with devices fitted with plug-in cards that can both receive and transmit the coded infrared light 2. Because light signals do not interfere with one another—as radio signals can—and offer greater bandwidth, many more devices can share the optical network. Barriers such as partitions do not halt reception because beams reflect off room surfaces 3. Engineers are working on similar systems that use white LED lamps, flickering in code faster than the human eye can detect.

Where does it fit in the wireless communication?

Distance:
- 1km
- 100m
- 10m
- 1m
- 10cm

Speed:
- 1Mbit/s
- 10Mbit/s
- 100Mbit/s
- 1Gbit/s
- 10Gbit/s

Technologies:
- 3G
- WiMAX
- 3.9G
- 4G
- 802.11a/b/g
- 802.11n
- 802.11 VHT
- 802.15.3c Wireless HD
- Bluetooth
- UWB
- SIR/MIR/FIR
- VFIR
- UFIR
- RFID, NFC
- (IrDA) Protocol
- Transfer Jet
- Giga-IR

RF
Opto
Implemented
New technology
Wireless voice is of particular interest to developing countries that presently have little wire-line infrastructure.

Installation of a wireless infrastructure should be much less expensive than wire-line. However, the Quality-of-Service must be comparable to wire-line to be satisfactory as a nation’s primary telephone system. This is presently not the case in cellular systems in use in industrialized countries.
Major players like ATT and VERIZON are competing to provide complete communications services including video and wireless personal communications services.

Other potential competitors include cable companies and consortia of computer and entertainment companies. The final structure and nature of these emerging integrated service providers is not yet clear.
"Survival of the fastest"; global economy will dictate the use of the most advanced information technology to develop and manufacture products and provide service support.
Broadband information services will transform global communications into “Have’s” & “Have not’s” for information age; or as it is known, the “Digital Divide”.
Information Age

The “Have’s”
- Leapfrogging technology
- Developing economy
- Productivity increasing 4 - 6% each year
- Significant advances in learning theory

The “Have not’s”
- Falling behind
- Growing political and social discontent
- Decreasing productivity
- High uses of energy sources
- Overall reduction in quality of life
Broadband delivery of Internet over omni-present power-lines hold great promise for closing a gaping “broadband gap” throughout the Globe.
Center for Information & Communications Technology Research